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Abstract: Many datasets contain a large number of zeros, and cannot be modeled

directly using a single distribution. Motivated by rain data from a global climate

model, we study a semiparametric mixture of binomial regressions, in which both

the component proportions and the success probabilities depend on the predictors

nonparametrically. An EM algorithm is proposed to estimate this semiparametric

mixture model by maximizing the local likelihood function. We also consider a

special case in which the component proportions are constant while the component

success probabilities still depend on the predictors nonparametrically. This model

is estimated by a one-step backfitting procedure, and the estimates are shown to

achieve the optimal convergence rates. The asymptotic properties of the estimates

for both models are established. The proposed procedures are applied to rain data

from a global climate model and historical rain data from Edmonton, Canada.

Simulation studies show that satisfactory estimates are obtained for the proposed

models for finite samples.
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1. Introduction

It is of great interest to study the evidence and impacts of climate change
from weather data over periods of time that range from decades to millions of
years (Parmesan and Yohe (2003), IPCC (2007), Tebaldi and Sansó (2009), and
Smith et al. (2009)). While historical weather data are often limited, massive
amounts of data for future weather can be generated from a global climate model.

Global climate models are mathematical models of the general circulation
of a planetary atmosphere or ocean. There are about 25 versions of global cli-
mate models developed in different research centers across the world. Global
climate models are commonly used for simulating the atmosphere or ocean of
the earth using complex computer programs. They are widely used for weather
forecasting, understanding the climate, and projecting climate changes. The
Geophysical Fluid Dynamics Laboratory (GFDL) in the U.S.A. developed one
global climate model and implemented some computer simulations (Delworth et
al. (2006), Gnanadesikan et al. (2006), Wittenberg et al. (2006) and Stouffer et
al. (2006)).

http://dx.doi.org/10.5705/ss.2010.062
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Figure 1. The number of rain days per week in the Edmonton area, Canada
in three periods 1981-2000, 2046-2065, and 2081-2100, based on the outputs
of the GFDL’s global climate model.

Figure 1 displays the number of rain days per week in the Edmonton area,
Canada in three periods 1981-2000, 2046-2065, and 2081-2100, based on the
outputs of the GFDL’s global climate model. Although such count data might
typically be modelled using a binomial distribution, preliminary analysis indi-
cates that this variable does not follow a binomial distribution since too many
weeks have no rain days.

Motivated by this example, we propose a semiparametric mixture of binomial
regression model

f(X(t) | π1(t), p(t)) = π1(t)Bin(X(t);N, 0) + π2(t)Bin(X(t);N, p(t)), (1.1)

where Bin(X; N, p) is the probability mass function of a binomial distribution for
the variable X based on N trials with success probability p . The first component
is a degenerate distribution with mass 1 on 0. To make the model identifiable,
we assume N ≥ 2; see Teicher (1961) and Lindsay (1995). Two nonparametric
functions, π1(t) and π2(t), are the proportions of zero component and binomial
component, respectively, under the constraint π1(t) + π2(t) = 1. The nonpara-
metric function, p(t), is the success probability in the binomial component. The
semiparametric mixture model (1.1) can be used to model many data with extra
numbers of zeros, for example, the number of days per week having a forest fire,
since zeros are commonplace in winter.

Mixtures of binomial distributions

π1Bin(x, p1) + · · · + πmBin(x, pm) (1.2)
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were first used by Pearson (1915) to model yeast cell count data. Since then,
mixtures of binomial distributions have been used in such fields as medicine
(Farewell and Sprott (1988)), biology (Brooks et al. (1997)) and veterinary sci-
ence (Böhning (1998)). If the component-specific pj ’s depend on some predictors
parametrically, then (1.2) is called a “mixture of binomial regression”. Mix-
tures of binomial regression models have wide applications in medicine (Zhu
and Zhang (2004)), biology (Follmann and Lambert (1989)), marketing research
(Wedel and DeSarbo (1933) and De Soete and DeSarbo (1991)), genetics (Zhang
and Merikangas (2000)), medical research (Lwin and Martin (1989)), the eco-
nomics of labor markets (Geweke and Keane (1999)), and agriculture (Wang and
Puterman (1998)). However, conventional mixtures of binomial regression mod-
els require strong parametric assumptions about the pj ’s and cannot account for
the dependence of πj ’s on the predictors.

The semiparametric mixture model (1.1) removes the parametric assump-
tions about the component proportions and success probabilities. The functions
π1(t) and p(t) in the semiparametric mixture model are estimated using non-
parametric smoothing methods such as kernel regression. We propose an EM
algorithm (Dempster, Laird, and Rubin (1977)) to maximize the local likelihood
function, and prove that the EM algorithm monotonically increases the local
likelihood function. The convergence rate of the consistent estimates and their
asymptotic normality are also established.

In some cases, one has prior knowledge that the component proportions are
constant over t. Therefore, we also consider the model

f(X(t) | π1, p(t)) = π1Bin(X(t);N, 0) + π2Bin(X(t);N, p(t)). (1.3)

This model requires a local estimate of p(t) and a global estimate of π1. Then
it is difficult to estimate both p(t) and π1 efficiently. We propose a one-step
backfitting algorithm, in which π1 is first estimated globally given an initial
consistent estimate of p(t), and then p(t) is updated given the global estimate
of π1. We show that the one-step backfitting estimates for both p(t) and π1

achieve the optimal convergence rates; the computation is much more efficient
than performing multiple iterations.

The rest of the paper is organized as follows. In Section 2, we introduce
the estimation procedure for both proposed semiparametric mixture of binomial
regression models. The asymptotic properties of the proposed procedures are
established in Section 3. The bandwidth selection is discussed in Section 4. In
Section 5, we demonstrate the proposed procedures by modeling the rain data
from GFDL’s global climate model and the historical rain data from Edmonton,
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Canada. In Section 6, we use simulations to compare the finite sample per-
formance of the proposed semiparametric mixture models with a non-mixture
model.

2. Methods

In this section, we introduce the estimation procedures and algorithms for
the proposed semiparametric mixture models (1.1) and (1.3). In (1.1), both the
mixing proportion π1(t) and the success probability p(t) depend on the predictor
t nonparametrically. We propose to use a local likelihood criterion to estimate
them. An EM algorithm is also proposed to maximize the local likelihood. In
(1.3), the component proportion π1 is a constant parameter while the success
probability p(t) depends on the predictor t nonparametrically. Therefore, we
need to estimate π1 using global data and p(t) using local data. We propose a
one-step backfitting procedure to achieve the optimal convergence rates for both
the estimates of π1 and p(t).

2.1. Semiparametric mixture model with time-varying proportions

The semiparametric mixture model (1.1) has two nonparametric functions to
estimate: the proportion of zero component π1(t) and the success probability p(t).
Kernel regression is applied to estimate these nonparametric functions, though
one could use such other nonparametric smoothing methods as local polynomial,
spline smoothing, and wavelets.

The two nonparametric functions, at any point t0, are estimated by maxi-
mizing the local log-likelihood (Tibshirani and Hastie (1987) and Fan and Gijbels
(1996))

`(θ(t0)) =
1
n

n∑
i=1

Kh(ti − t0) log
[
π1(t0)I(xi = 0)

+{1 − π1(t0)}
(

N

xi

)
p(t0)xi{1 − p(t0)}N−xi

]
, (2.1)

where θ(t0) = {π1(t0), p(t0)}T , xi is the measurement or observation for X(t) at
ti, i = 1, · · · , n, and Kh(·) = h−1K(t/h) is a rescaling of the kernel function K(·)
with the bandwidth h. We use the Gaussian kernel for K(·) for the data analysis
in Section 5 and our simulation study in Section 6. The choice of bandwidth h
is discussed in Section 4.

Note that there is no explicit solution to the maximization of (2.1), we
propose using an EM algorithm. Define a vector of component indicator zi =
(zi1, zi2)T , where

zij =
{

1, if (xi, ti) is from the j-th component;
0, otherwise.
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Then the complete local log-likelihood function for the complete data {(xi, zi),
i = 1, . . . , n}, after omitting some irrelevant constants, is

lc(θ(t0)) =
n∑

i=1

Kh(ti − t0)[I(xi = 0)zi1 log π1(t0)

+zi2 {log(1 − π1(t0)) + xi log p(t0) + (N − xi) log(1 − p(t0))}].

Let y = {(x1, t1), . . . , (xn, tn)}, and θ(k)(t0) be the value of θ(t0) after the
k-th EM iteration. The E-step at the (k + 1)-st iteration requires one to find
E

θ(k)
(t0)

(lc(θ(t0)) | y). Since lc(θ(t0)) is a linear function of zij , the E-step

is equivalent to finding the classification probabilities p
(k+1)
ij = E

θ(k)
(t0)

(Zij | y),

where Zij is the random variable corresponding to zij . The M step at the (k+1)-
st iteration requires one to maximize E

θ(k)
(t0)

(lc(θ(t0)) | y) with respect to θ(t0),
for which there are explicit solutions.

Let π
(k)
1 (t0) and p(k)(t0) be the value of π1(t0) and p(t0) at the k-th iteration.

E step : find the classification probabilities, given the current estimate,

p
(k+1)
i1 =

π
(k)
1 (t0)Bin(xi; N, 0)

π
(k)
1 (t0)Bin(xi; N, 0) + {1 − π

(k)
1 (t0)}Bin(xi; N, p(k)(t0))

,

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update {π1(t0), p(t0)} by

π
(k+1)
j (t0) =

∑n
i=1 Kh(ti − t0)p

(k+1)
ij∑n

i=1

∑2
j=1 Kh(ti − t0)p

(k+1)
ij

, j = 1, 2,

(2.2)

p(k+1)(t0) =
∑n

i=1 Kh(ti − t0)p
(k+1)
i2 xi

N
∑n

i=1 Kh(ti − t0)p
(k+1)
i2

.

The algorithm monotonically increases the local log-likelihood (2.1) after
each iteration, as shown in the following theorem.

Theorem 1. At each iteration of the E and M steps, `(θ(k+1)(t0)) ≥ `(θ(k)(t0))
for all k, where θ(t0) = (π1(t0), p(t0)) and `(·) is defined at (2.1).

The proof of Theorem 1 is given in the supplementary file.

2.2. Semiparametric mixture model with constant proportions

For the semiparametric model (1.3), the success probability p(t) needs to be
estimated locally while the constant proportion π1 can be estimated globally. It is
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then not easy to estimate both p(t) and π1 efficiently. In this section, we propose
a one-step backfitting procedure to estimate the model (1.3): π1 is estimated
globally given an initial consistent estimate of p(t); we update the estimate for
p(t) given the root n consistent estimate of π1.

We first consider the global estimation of it. Let p̂(t) and π̂1 denote consistent
estimates of p(t) and π1, respectively; these can be obtained by maximizing
the local log-likelihood (2.1). Since π̂1 is a local estimator, it is not root n

consistent. To improve efficiency, π1 can be estimated globally by maximizing
the log-likelihood (2.3) using the EM algorithm after replacing p(t) in (1.3) by
p̂(t):

`1(π1) =
1
n

n∑
i=1

log
[
π1I(xi = 0) + π2

(
N

xi

)
p̂(ti)xi{1 − p̂(ti)}N−xi

]
. (2.3)

Let π̃1 be the maximizer of (2.3). We prove the root n consistency of π̃1 in Section
3.2.

The EM algorithm to maximize (2.3) at the (k + 1)th step is as follows

E step : find the classification probability given the current estimates

p
(k+1)
i1 =

π
(k)
1 Bin(xi; N, 0)

π
(k)
1 Bin(xi; N, 0) + π

(k)
2 Bin(xi; N, p̂(ti))

,

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update (π1, π2) by

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, 2.

We can next improve the efficiency of the estimator for p(t) given π̃1. Re-
placing π1 in (1.3) by π̃1, we propose to estimate p(t0), for any given t0, by
maximizing the local likelihood function

`2(p(t0)) =
1
n

n∑
i=1

Kh(ti − t0) log
[
π̃1I(xi = 0)

+(1 − π̃1)
(

N

xi

)
p(t0)xi(1 − p(t0))N−xi

]
. (2.4)

Let p̃(t0) be the resulting estimate of p(t0). Since π̃1 is a root n consistent
estimate of π1, the p̃(t0) has the same efficiency as if π1 were known. Therefore,
p̃(t0) is more efficient than p̂(t0), which needs to account for the uncertainty of
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π̂1, since p̂(t0) and π̂1 are estimated locally simultaneously in (2.1). See Theorem
4 and 5 for more details.

An EM algorithm is proposed to maximize (2.4). The estimate for p(t0) is
updated at the (k + 1)th step as follows

E step : find the classification probability given the current estimate

p
(k+1)
i1 =

π̃1Bin(xi; N, 0)
π̃1Bin(xi; N, 0) + (1 − π̃1)Bin(xi; N, p(k)(t0))

,

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update p(t0) by

p(k+1)(t0) =
∑n

i=1 Kh(ti − t0)p
(k+1)
i2 xi

N
∑n

i=1 Kh(ti − t0)p
(k+1)
i2

.

The ascending property of the above EM algorithm can be established along the
lines of Theorem 1, and we omit this here.

One might further employ the backfitting procedures with a full iteration
between estimating π1 and p(t) (see, for example, Buja, Hastie, and Tibshirani
(1989), Hastie and Tibshirani (1990), and Opsomer and Ruppert (1999)), or with
a profile likelihood approach (Severini and Staniswalis (1994)), to improve effi-
ciency. However, we prove in Section 3.2 that the one-step backfitting procedure
achieves the optimal convergence rate, and with less computation.

The idea of one-step estimate has been used by many authors to simplify the
computation procedure. See, for example, Carroll et al. (1997) for the generalized
partially linear single-index model, and Li and Liang (2008) for the generalized
partially linear model.

3. Statistical Theory

In this section, we investigate the asymptotic properties of the proposed
estimates for the semiparametric mixture models at (1.1) and (1.3).

3.1. Semiparametric mixture model with time-varying proportions

Convergence rates of the estimates π̂1(t) and p̂(t) for (1.1) are in Theorem
2, and asymptotic normality results are in Theorem 3.

Theorem 2. Under Conditions A−D in the Appendix, there exists a consistent
maximizer θ̂(t0) = (π̂1(t0), p̂(t0))T for the local log-likelihood function (2.1) such
that ∥∥∥θ̂(t0) − θ0(t0)

∥∥∥ = Op

{
(nh)−1/2 + h2

}
,
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where ‖ · ‖ is the Euclidian norm, and θ0(t0) is the true value of θ(t0) =
(π1(t0), p(t0))T .

The proof of Theorem 2 is given in the Appendix.
For asymptotic normality of the estimates, we need some notations. Let

f(x,θ) = π1Bin(x; N, 0) + π2Bin(x; N, p),

where θ = (π1, p). Let l(x,θ) = log f(x,θ) and

l1(x,θ) =
∂

∂θ
l(x,θ) , l2(x,θ) =

∂2

∂θ∂θT
l(x,θ) ;

G(t) = E{l1(X, θ0(t0)) | T = t} , I(t) = −E{l2(X, θ0(t0)) | T = t} . (3.1)

The moments of K and K2 are denoted, respectively, by

µj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt.

Theorem 3. Under Conditions A − D in the Appendix, the estimate θ̂(t0) =
(π̂1(t0), p̂(t0))T satisfies

√
nh

{
θ̂(t0) − θ0(t0) − b(t0)h2 + op(h2)

}
D−→ N

{
0, g−1(t0)I−1(t0)ν0

}
,

where g(t) is the marginal density of the time random variable T , and

b(t0) = I−1(t0)
{

G′(t0)g′(t0)
g(t0)

+
1
2
G′′(t0)

}
µ2, (3.2)

The proof of Theorem 3 is given in the Appendix.

3.2. Semiparametric mixture model with constant proportions

Let π̃1 and p̃(t0) denote the estimates for the semiparametric mixture of
binomial regression model (1.3) using the one-step backfitting procedure intro-
duced in Section 2.2. We first establish the root n consistency of π̃1 and give its
asymptotic distribution in Theorem 4. The asymptotic distribution of p̃(t0) is
given in Theorem 5.

Theorem 4. Under Conditions A-D in the Appendix, if nh4→0 and nh2log(1/h)
→ ∞, then

√
n(π̃1 − π1) → N

(
0, I−2

π1
Σ

)
,
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where

Iπ1 = −E
{

∂2f(x, π1, p(t))
∂π2

1

}
,

Σ = Var
{

∂f(x, π1, p(t))
∂π1

− Iπ1p(t)ψ(t, x)
}

,

Iπ1p(t) = −E
{

∂2f(X,π1, p(t))
∂π1∂p

∣∣∣T = t

}
,

and ψ(t, x) is the second entry of I(t)−1l1(x,θ(t)) .

The proof of Theorem 4 is given in the Appendix. That h = o(n−1/4) while
the optimal bandwidth for kernel smoothing usually satisfies h = O(n−1/5) means
that undersmoothing is required for p̃(t) in order to get the root n convergence
rate for π̃1. This is consistent with what has been found by Carroll et al. (1997)
and Li and Liang (2008).

Theorem 5. Under Conditions A − D in the Appendix,
√

nh
{
p̃(t0) − p(t0) − b̃(t0)h2

}
D−→ N

(
0, g(t0)−1Ip(t0)−1ν0

)
,

where

b̃(t0) =
1

2g(t0)Ip(t0)
{
Γ′′(t0)g(t0) + 2Γ′(t0)g′(t0)

}
µ2 ,

Γ(t) = E
{

∂f(x, π1, p(t0))
∂p

∣∣∣T = t

}
,

Ip(t) = Var
{

∂f(x, π1, p(t0))
∂p

∣∣∣T = t

}
.

The proof of the Theorem 5 is given in the Appendix. Note that Ip(t) is the
(2, 2) element of I(t) and Γ(t) is the second entry of G(t), where I(t) and G(t)
are defined in (3.1). If I22(t) is the (2, 2) element of I−1(t), 1/Ip(t0) ≤ I22(t0).
Comparing the results in Theorem 3 and 5, we see that the one-step backfitting
estimator p̃(t0) has smaller asymptotic bias and variance than does p̂(t0).

4. Bandwidth Selection

The nonparametric functions in (1) and (3) are estimated using kernel re-
gression with some bandwidth h. The optimal bandwidth can be obtained by
minimizing the asymptotic weighted mean square error; a practical data-driven
bandwidth selector can be based on the Nadaraya-Watson estimator. For sim-
plicity, we focus on (1.1). The methods are easily adaptive for (1.3).
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Based on Theorem 3, one can see that the asymptotic bias of θ̂ is b(t0)h2 and
the asymptotic covariance is (nh)−1g−1(t0)I−1(t0)ν0. An optimal bandwidth for
estimating θ(t0) can be obtained by minimizing the asymptotic weighted mean
squared error (MSE)

E
[{

θ̂(t0) − θ(t0)
}T

W
{

θ̂(t0) − θ(t0)
}]

=b(t0)T Wb(t0)h4 +
ν0

g(t0)nh
tr

{
I−1(t0)W

}
+ op (an) ,

where an = {h4 + (nh)−1}, tr(A) is the trace of A, and W is a weight function.
Then the optimal local bandwidth is

ĥopt(t0) =

[
tr

{
I−1(t0)W

}
ν0

4b(t0)T Wb(t0)g(t0)

]1/5

n−1/5, (4.1)

where b(t0) is given in (3.2). If our main interest is in p(t0), the weight function
W can be diag{0, 1}; if we are interested in both π1(t0) and p(t0), we can take
W = I(t0), which is proportional to the inverse of the asymptotic variance of
θ̂(t0).

Based on the asymptotic bias and variance, we can also derive a global band-
width selector by minimizing the asymptotic integrated weighted mean squared
error (MSE) ∫

E
[{

θ̂(t) − θ(t)
}T

W
{

θ̂(t) − θ(t)
}]

w(t)dt,

where w(t) is any weight function, for example g(t), or 1. Then the optimal
global bandwidth is

ĥopt =

[
ν0

∫
tr

{
I−1(t)W

}
g−1(t)w(t)dt

4
∫

b(t)T Wb(t)w(t)dt

]1/5

n−1/5. (4.2)

Note that there are some unknown quantities in (4.1) and (4.2). To proceed,
one can use the Plug-In idea (see, for example, Ruppert, Sheather, and Wand
(1995)) and replace the unknown quantities by estimates of them. In addition,
one can also use cross-validation to choose the bandwidth, with a little more
computation.

Noting that (2.2) is a conventional Nadaraya-Watson estimator if pi2 is ei-
ther 0 or 1, we can also employ the existing bandwidth selector for the Nadaraya-
Watson estimator; see, for example, Rice (1984) or Hurvich, Simonoff, and Tsai
(1998), based on some initial partition of the data into different components.
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The initial classification probabilities, pij , can be estimated by assuming π1(t)
and p(t) are constant or polynomial functions of t. This simple initial fit cannot
guarantee a consistent estimate, but is easy to implement and generally works
well. This idea of initial parametric fit has been used by Fan and Gijbels (1996,
Sec. 4.2). Note that the nonzero observation xi must be from the second compo-
nent; the only uncertainty is the zero observations of x. Therefore, the impact
of misspecification of π1(t) and p(t) is very small. One can also iterate the above
procedure serval times to get a refined bandwidth. We use this bandwidth selec-
tion method in our simulations and data applications.

5. Applications

5.1. Rain data from GFDL’s global climate model

GFDL’s computer simulation, based on their global climate model, generated
rain data at 128 grid points in longitude and 64 grid points in latitude over the
whole earth in three time periods: 1981-2000, 2046-2065, and 2081-2100. We
chose a grid point close to Edmonton, Canada, and analyzed the rain data at
this grid point. Figure 1 displays the number of rain days per week during the
three time periods; a rain day is defined as a day with more than 1 millimeter of
rainfall. Model (1.1) with N = 7 was used to analyze the rain data from each of
the three time periods. We used the bandwidth introduced at the end of Section
4, and the Gaussian kernel for K(·) for our model (1.1). Similar choices were
used for the other examples.

It is of great interest to estimate the trend of extreme weather when studying
the evidence of climate change. For the rain data, extreme weather includes
having zero rain days in one week (too dry) or having seven rain days in one
week (too wet). The probabilities of having zero and seven rain days in one week
are calculated as P (X(t) = 0) = π̂1(t) + {1 − π̂1(t)}{1 − p̂(t)}7 and P (X(t) =
7) = {1− π̂1(t)}p̂(t)7, respectively. Figure 2 displays the estimated P (X(t) = 0)
and P (X(t) = 7) in the three time periods. The time period 2081-2100 has a
high probability of having zero rain days in one week 22.0% on average. The
average probability of having zero days in one week in the time period 2081-
2100 increases 27.4% and 6.2% from the time periods 1981-2000 and 2046-2065,
respectively.

The time period 2081-2100 also has a high probability of having seven rain
days in one week, 0.26% on average. The time period 2081-2100 has the average
probability of having seven rain days in one week increasing 9.4% and 84.0%
from the time periods 1981-2000 and 2046-2065, respectively. This is suggestive
of more extreme weather in the time period 2081-2100.
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Figure 2. The top and bottom panels show the estimated probabilities of
having zero and seven rain days in one week within the three time periods
1981-2000 (solid lines), 2046-2065 (dashed lines) and 2081-2100 (thick dash-
dotted lines), respectively.

Figure 3. The number of rain days per week in Edmonton, Canada during
1961-1993.

5.2. Historical rain data in Edmonton

Figure 3 displays the number of rain days per week in Edmonton, Canada
during 1961-1993. We fit the rain data with Model (1.1) with N = 7.

Figure 4 displays the estimates of the probabilities of having zero and seven
rain days in one week. The time period 1986-1987 was extremely dry, having
the largest probability of zero rain days in one week (21.1%) and the smallest
probability of seven rain days in one week (0.042%). On the other hand, 1973
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Figure 4. The top and bottom panels display the estimated probabilities
of having zero and seven rain days in one week in Edmonton, Canada dur-
ing 1961-1993, respectively. The solid and dashed lines are the estimates
from Model (1.1) and Model (5.1), respectively. The dotted curves are the
corresponding 95% confidence intervals for the estimates from Model (1.1).

had extreme rainfall, with the smallest probability of having zero rain days in one
week (7.4%) and the largest probability of having seven rain days in one week
(0.200%).

We also fit the rain data with the non-mixture model

f(X(t) | p(t)) = Bin(X(t);N, p(t)). (5.1)

This model ignores the degenerate zero component and is equivalent to Model
(1.1) when π1(t) ≡ 0. As a result, it seriously underestimates the probability of
having zero and seven rain days in one week, which is around 5.9% and 0.046%
for the whole time period. In Figure 4, one can also see that the estimates from
the non-mixture model are almost flat; the non-mixture model does not have
enough flexibility tp capture the variation in the data.

The parametric bootstrap is applied to obtain 95% confidence intervals for
the probabilities of having zero and seven rain days in one week, implemented
as follows. Simulated data are generated from Model (1.1) with N = 7, where
π1(t) and p(t) are then to be the estimates from the rain data. The semipara-
metric mixture model is estimated from the simulated data in 1,000 simulation
replicates. The probabilities of having zero and seven rain days in one week are
calculated from the 1,000 estimates of the semiparametric mixture model. We
then obtain 95% confidence interval by calculating the 2.5% and 97.5% quantiles
of the 1,000 probabilities of having zero and seven rain days in one week. Figure
4 displays the intervals. Note that the probability of having zero rain days in one
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Figure 5. The mean of the estimates for p(t) and π1(t) in Model (1.1), both
are plotted in solid lines; the dashed lines are the true functions p(t) and
π1(t). The dash-dotted line is the mean of the estimates for p(t) in the
non-mixture model (5.1).

week, as estimated from the non-mixture model, is under the lower confidence
bound.

6. Simulations

Simulation studies were implemented to evaluate the finite sample perfor-
mance of our estimators for Models (1.1) and (1.3); We compare them with the
non-mixture model (5.1).

The simulated data were generated based on Model (1.1) and (1.3) . Both
cases took the true p(t) = 0.3(1.5+cos(2πt)). In the first case, the true π1(t) was
the time-varing function π1(t) = 0.2(1.5 + sin(2πt)); in the second case, the true
π1 = 0.4 . We evaluated the finite sample performance by varying the sample
size as small (n = 50), medium (n = 100), and large (n = 200). The times were
n equally-spaced grid points in [0,1]. Models (1.1) and (5.1) were estimated from
the simulated data in the first case, and Models (1.3) and (5.1) were estimated
in the second case. The simulation was done with 100 replicates.

Figure 5 displays the mean of the estimates for π1(t) and p(t) in the semi-
parametric mixture model (1.1) in the first scenario. For comparison, we also
add the mean of the estimates for p(t) in the non-mixture model (5.1) . From
Figure 5, one can see that the mean estimates of both π1(t) and p(t) are very
close to the true functions, while the mean estimate of p(t) in the non-mixture
model is smaller than the true p(t), and this becomes more serious where the
true π1(t) is large.

When the data are simulated based on the first scenario, the estimates for
Model (1.1) and Model (5.1) are summarized in Table 1. The average absolute
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Table 1. The summary of the estimates for Model (1.1) and (5.1) when
the simulated data were generated based on Model (1.1). The true success
probability function p(t) = 0.3(1.5 + cos(2πt)), and the true π1 = 0.2(1.5 +
sin(2πt)). The last three columns are the absolute values of bias, standard
deviation (SD), and root mean squared error (RMSE) of the estimates for
Models (1.1) and (5.1), averaged over n equally spaced points in [0,1]. Model
(5.1) was estimated with the Penalized Iteratively Reweighted Least Squares
(P-IRLS) method (see e.g., Wood (2000)) using the “mgcv” package in R
(R Development Core Team (2010)).

n Model |BIAS| SD RMSE

50 Mixture π1(t) 0.013 0.164 0.165
p(t) 0.017 0.080 0.082

Non-Mixture p(t) 0.137 0.100 0.173

100 Mixture π1(t) 0.014 0.133 0.134
p(t) 0.013 0.059 0.061

Non-Mixture p(t) 0.132 0.069 0.152

200 Mixture π1(t) 0.013 0.099 0.100
p(t) 0.009 0.044 0.045

Non-Mixture p(t) 0.132 0.047 0.142

values of biases of p̂(t) using the semiparametric mixture model were 12%, 10%,
and 7% of those using the non-mixture model when the sample size was 50,
100, and 200, respectively. The estimates using the semiparametric mixture
model had slightly smaller average standard deviations for p(t) than those using
the non-mixture model. The semiparametric mixture model also reduced the
average RMSE of p̂(t) by 53%, 60%, and 68% over the non-mixture model when
the sample size was 50, 100, and 200, respectively.

When the data are simulated based on the second scenario, the mixture
model (1.3) was estimated using the one-step estimator and the traditional full
iterative backfitting algorithm. Table 2 gives the summary of the estimates. The
two algorithms have almost the same quality of estimates for p(t); the backfitting
algorithm had a slightly smaller RMSE for π̂1 than the one-step method, but the
one-step method took less than half the time. The non-mixture model (5.1) was
also fitted to the same simulated data. The mixture model (1.3) reduced the
average RMSE of p̂(t) by 62%, 70%, and 77% over the non-mixture model when
the sample size was 50, 100, and 200, respectively.
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Appendix

In this section, we provide a sketch of the proof of Theorems 2.1 and 3.3.
The proof of Theorems 3.1, 3.2, and 3.4 are standard and are omitted here. Refer
to the supplementary file for more detail.

Let g(t) be the density function for t. The following technical conditions are
to be imposed. They are not the weakest possible conditions, but they facilitate
the proofs.

Technical Conditions:

A π1(t) and p(t) have continuous second derivatives at t0, 0 < π1(t0) < 1 and
0 < p(t0) < 1. (For Model (1.3), we make the same assumption for p(t) and
assume 0 < π1 < 1.)

B g(t) has a continuous second derivative at the point t0 and g(t0) > 0.
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C K(·) is a symmetric (about 0) kernel density with compact support [−1, 1].

D The bandwidth h tends to zero such that nh → ∞.

Proof of Theorem 1. Note that

`(θ) =
1
n

n∑
i=1

Kh(ti − t0) log f(xi, θ).

Hence,

`(θ(k+1)) − `(θ(k))

=
n∑

i=1

log

{
π

(k)
1 B(xi, N, 0)
f(xi, θ

(k))
π

(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+
π

(k)
2 B(xi, N, p(k))

f(xi, θ
(k))

π
(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi − x0)

=
n∑

i=1

log

{
r
(k+1)
i1

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+r
(k+1)
i2

π
(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi−x0).

By Jensen’s inequality,

`(θ(k+1)) − `(θ(k)) ≥
n∑

i=1

[
r
(k+1)
i1 log

{
π

(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

}
Kh(xi − x0)

+r
(k+1)
i2 log

{
π

(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi − x0)

]
.

Based on (2.2), we have `(θ(k+1)) − `(θ(k)) ≥ 0.

Proof of Theorem 4. Let

f(xi, π1, p̂(ti)) = log
[
π1I(xi = 0) + π2

(
N

xi

)
p̂(ti)xi(1 − p̂(ti))N−xi

]
.

Based on a Taylor expansion of (2.3), we have that
√

n(π̃1−π1) = B−1
n An+op(1),

where

An =
1√
n

n∑
i=1

∂f(xi, π1, p̂(ti))
∂π1

and Bn = − 1
n

n∑
i=1

∂2f(xi, π1, p̂(ti))
∂π2

1

.

It can be shown that

Bn = −E
{

∂2f(xi, π1, p(ti))
∂π2

1

}
+ op(1) = Iπ1 + op(1).
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And that

An =
1√
n

n∑
i=1

∂f(xi, π1, p(ti))
∂π1

+
1√
n

n∑
i=1

∂2f(xi, π1, p(ti))
∂π1∂p

{p̂(ti)−p(ti)}+Op(d1n)

=
1√
n

n∑
i=1

∂f(xi, π1, p(ti))
∂π1

+Sn1+Op(d1n),

where d1n = n−1/2||π̃1 − π1||2∞ = op(1). From the proof of Theorem 3 (see the
Supplement), we have

θ̂(ti) − θ(ti) =
1
n

g(ti)−1I(ti)−1
n∑

j=1

Kh(tj − ti)l1(xj , θ(ti)) + Op(dn2).

Similar to Li and Liang (2008) and Carroll et al. (1997), one can prove that
n1/2dn2 = op(1) uniformly in ti if nh2/ log(1/h) → ∞. Let ψ(tj , xj) be the
second entry of I(tj)−1l1(xj , θ(tj)). Since p(ti) − p(tj) = O(ti − tj) and K(·) is
symmetric about 0, we have

Sn1 =
1

n−3/2

n∑
j=1

n∑
i=1

∂2f(xi, π1, p(ti))
∂π1∂p

g(ti)−1ψ(tj , xj)Kh(tj − ti) + Op(n1/2h2)

= Sn2 + Op(n1/2h2).

It can be shown, by calculating the second moment, that Sn2 − Sn3 = op(1),
where Sn3 = −n−1/2

∑n
j=1 ξ(tj , xj), with

ξ(tj , xj) = −E
{

∂2f(x, π1, p(tj))
∂π1∂p

| t = tj

}
ψ(tj , xj) = Iπ1p(tj)ψ(tj , xj).

Using nh4 → 0,

An = n−1/2
n∑

i=1

{
∂f(xi, π1, p(ti))

∂π1
− ξ(ti, xi)

}
+ op(1).

We can show that E(An) = 0. With

Σ = Var (An) = Var
{

∂f(x, π1, p(t))
∂π1

− ξ(t, x)
}

,

the Central Limit Theorem gives us
√

n(π̃1 − π1) → N(0, I−2
π1

Σ).
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